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How can we probe the multi-
messenger emission of TDEs?



Introducing the Zwicky Transient Facility

uugu

ZTF, 47 deg?

Credit: lair Arcavi

ZTF is an optical telescope with a 47 sq. deg. field of view

Surveys the entire northern sky every 2 nights, in g+r, as part of a public survey
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The ZTF neutrino follow-up program Stein et al. 2022
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The ZTF neutrino follow-up program Stein et al. 2022
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What are we looking for?

Bartos and Kowalski 2017
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Some statistics...
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Two TDEs coincident with neutrinos

nature astronomy

ARTlCLES nature d
https://doi.org/10.1038/s41550-020-01295-8 aStr Oﬂomy '

'l) Check for updates b ;

New sources ’

of neutrinos

| A tidal disruption event coincident with a
} high-energy neutrino

Candidate Tidal Disruption Event AT2019fdr Coincident with a ,
§ High-Energy Neutrino q

'» Simeon Reusch et al.
4 Phys. Rev. Lett. 128, 221101 — Published 3 June 2022

' PhySICS see Focus story: Neutrinos from a Black Hole Snack
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Neutrino follow-up works as a method -> Using ~dozens of multi-wavelength follow-up
campaigns, you can probe a ~10%-level contribution to the astrophysical neutrino flux.

Performing realtime searches enables prompt and flexible multi-wavelength observations
to characterise individual sources.

Theoretical models, informed by both population data and this single-object data, are
compatible with neutrino emission from TDEs.
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What do we need to enable
multi-messenger follow-up?



The ZTF neutrino follow-up program Stein et al. 2022

Reject stars, ,
asteroids,
planets

8§ ~500k objects
. per night

Correlate

n—— = Spectroscopically
Credit: lair Arcavi s :
—redit- fair Arcay ‘ o classify few
— Credit: Laurie Hatch remaining ObjeCts

_ Neu_trino Find
dlrec’flon and counterpart?
time

I T Trigger
1 1 Credit: ICeCUbe TDEs in the TDAMM era | Robert Stein | TDAMM | 8/23/22 FOIIOW-Up




Any neutrino follow-up program Stein et al. 2022

i Pipeline to select candidates that are:

Telescope to
find

candidates

- Spatially/temporally coincident
1- Likely astrophysical
- Belong to populations which could emit neutrinos
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Any neutrino follow-up program Stein et al. 2022

{ Pipeline to select candidates that are:

Telescope to
, find "
1: Prompt and reliable neutrino information is the prerequisite for all downstream multi- §

messenger analysis. Need accurate localisations, and useful information to prioritise §
“better” (=more astrophysical) neutrino alerts.

{- Spatially/temporally coincident

Spectroscopically
| classify few
Credit: Laurie Hatch remaining ObjeCtS
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Any neutrino follow-up program Stein et al. 2022

'f Pipeline to select candidates that are:

Telescope to™ }§
find t - Spatially/temporally coincident

candidates  {- Likely astrophysical
'L. oy - Belong to populations which could emit neutrinos §

2. Once accounting for detector systematics, neutrino “90% contours” will almost
always be a few square degrees. Suitably wide-field telescopes are required to tile these
regions and identify possible EM counterparts.
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2, 2022

Any neutrino follow-up progran
{ Pipeline to select candidates that are:

Telescope to/ §
find Spatially/temporally coincident

candidates_\ 1- Likely astrophysical
% | * Belong to populations which could emit neutrings j

3. Pipelines are needed to select candidates. This is primarily done though algorithmic
filtering, ML, catalogue matching. Public survey data is invaluable here.

_______ 5 Credit: Laurie Hatch
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Any neutrino follow-up program Stein et al. 2022

{ Pipeline to select candidates that are:

Telescopeto §
find Spatially/temporally coincident
candidates_  {- Likely astrophysical

'L. ¥ |- Belong to populations which could emit neutrinos §

Spectroscopically
.. classify few
Credit: Laurie Hatch remaining ObjeCt

4. Need dedicated spectroscopic programs to support EM follow-up.
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Any neutrino follow-up program Stein et al. 2022

'f Pipeline to select candidates that are:

Telescopeto §
find t - Spatially/temporally coincident

candidates, {- Likely astrophysical

'L. oy - Belong to populations which could emit neutrinos §

5. We require multi-wavelength observations to characterise the sources. These
could be from dedicated proposals, but DDTs have also worked well. The
community is currently operating a “kitchen sink” model, and that will presumably
still be true in another decade.
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Beyond Optical Follow-Up



Towards a pan-chromatic view of TDEs
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Not to scale (yet!)




Towards a pan-chromatic view of TDEs
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Not to scale (yet!)

Systematic searches
are possible. Need
wide-field surveys for
each wavelength!
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Credit: Robert Stein

WINTER will do a J-band survey at ~monthly cadence, AND dedicated neutrino follow-up!
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Thinking outside the box



&he New Pork Times

Scraa romswm 16as i N
. T . In Celestial Twist, Black Hole
Swallows a Dying Star

Swift XRT observations
at energies between
300 and 10,000 eV

0 Givethisarticle 2> []

By Sindya N. Bhanoo
June 16, 2011

Unusual long, slow decline i : -
punctuated by flare-ups . A s sh gk - In what sounds like a one of a kind murder mystery, a dying star

has fallen into a black hole and been ripped apart.
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Jetted TDEs are “the dog that didn’t bark”
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Back to the future: An optically-selected on-axis “jetted TDE”

Andreoni et al.
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Summary



Summary

 TDE science has had a great decade, let’s hope the
next one is just as fruitful!

* Neutrino follow-up can probe the multi-messenger
emission of TDEs, but requires an integrated TDA
ecosystem.

* We need to better understand the intersecting multi-
wavelength properties of TDEs. Requires wide-field
surveys.

* It was an unexpectedly slow decade for relativistic
TDEs. Optically-selected AT2022cmc has provided
an exciting leap forward, and suggests we need to
pay more attention to “rapid transients”.
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Backup



Embracing diversity in TDEs



real-time (pre-peak) selection
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real-time (pre-peak) selection
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Case Study: X-ray properties of 17 optical TDEs

Van Velzen et al. 2020
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More recently: AT2021ehb with dramatic X-ray/HR evolution

Rest-frame days since optical peak

Yao et al. 2022
(submitted)
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X-ray-selected TDEs from eROSITA tell a different story

Sazonov et al 2022.

Object Optical flare peak
(SRGE) AB mag
J135514.8+4-311605 g>21.83
J013204.6+122236 g>2151
J153503.4+-455056 21.33 <0 <20.58
J163831.7+534020 g>21.84, r>21.86
J163030.2+4+470125 2147 < g <20.71
J021939.9+-361819 g>2143
J161001.2+330121 g>21.68
J171423.6+085236 c>20.04
J071310.6+4-725627 g>2141
J095928.6+643023 2240 <r<21.64
J091747.6+524821 2149 <r<20.74
J133053.3+734824 g>21.73
J144738.4+671821 c>2041
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All eROSITA TDEs are optically

faint, with Lopt/Lx < 0.3
Only 4/13 detected




Towards a pan-chromatic view of TDEs
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Not to scale (yet!)




Towards a pan-chromatic view of TDEs
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Not to scale (yet!)

Systematic searches
are possible. Need
wide-field surveys for
each wavelength!
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Credit: Robert Stein

WINTER will do a J-band survey at ~monthly cadence, AND dedicated neutrino follow-up!

TDEs in the TDAMM era | Robert Stein | TDAMM | 8/23/22
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We currently lack information to inform theoretical models of TDE neutrino/CR emission.
Off the top of my head, critical open questions for theorists include:

- What is the local rate of (all) TDEs, and of jetted TDEs specifically?

- How do these rates change as a function of redshift?

- What is the distribution of outflows, winds or jets in TDEs? How common are they?
How do they vary by object?

* Do White-Dwarf/IMBH TDEs exist? How common are they? These in particular are
studied for potential UHECR emission, but there is a substantial gap in our
experimental knowledge. (We’ve found ~0 thus far.)

- How well can we distinguish a TDE in an AGN from an extreme AGN flare? What are
the differences (if any) between TDE accretion and AGN accretion?



Some statistics...

Median latency of 12 hours from neutrino detection to ZTF observation

0 10 20 30 40 50
Latency to first ZTF observation (hours)

Stein et al. 2022
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What did we find?



Some statistics...
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Some statistics...

Only a small fraction of 172 candidates are ultimately transients

AGN Variability (49%)

s AGN Flare (3%)

Artefact (10%)
Unclassified (22%)

Star (10%
(10%) Transient (7%)

TDEs and Neutrinos | Robert Stein | TDAMM | 8/23/22




Some statistics...

We classify ~100% of bright sources and ~70% of fainter ones

Bl (Classified
30 B Unclassified

Hmw“ﬂmw

14 15 16 17 18 19 20 21 22
Peak Apparent Magnitude

Stein et al. 2022
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Two TDEs coincident with neutrinos

nature astronomy

ARTlCLES nature d
https://doi.org/10.1038/s41550-020-01295-8 aStr Oﬂomy '

'l) Check for updates b ;

New sources ’

of neutrinos

| A tidal disruption event coincident with a
} high-energy neutrino

Candidate Tidal Disruption Event AT2019fdr Coincident with a ,
§ High-Energy Neutrino q

'» Simeon Reusch et al.
4 Phys. Rev. Lett. 128, 221101 — Published 3 June 2022

' PhySICS see Focus story: Neutrinos from a Black Hole Snack

Credit: Nature Astronomy
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From 24 neutrino follow-up campaigns -> Now two neutrino-TDEs

Steinetal. 2021 IC200530A ¢ g (472 nm) i (789 nm)
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ZTF program uncovered 2 likely neutrino-TDEs out of 24 follow-up campaigns, both particularly bright

Probability of finding two bright TDE by chance with ZTF program: (0.034%=3.40)

44 See Cecilia’s talk from this morning for more info on this



What did we not find?



How likely are you to actually find a counterpart?

Account for
astrophysical
probability
(typically ~50%)

24 neutrino
alerts

Calculate probability to
detect a counterpart in
at least one of our
campaigns

Use our
classification

\_ efficiency

(~70% for faint
sources)

46

) -

Account for

fraction of
localisation —\
observed Assume a population of

neutrinos sources with a
particular redshift evolution
(e.g SFR)

(~60-90%)

Estimate what fraction of
sources would be detectable
with ZTF for a given source
source luminosity




Limits on non-TDE neutrino source populations

Stein et al. 2022 Peak g-band vL, [erg s™1]
1042 1043 1044 1045
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From 24 campaigns -> first constraints on the optical luminosity function of neutrino sources
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How can we do better In
future?



How can we do better?

Stein et al. 2022

More campaigns
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Stein et al. 2022

Maximum fraction of neutrino sources

50

How can we do better?

Deeper campaigns
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How can we do better?

Stein et al. 2022

Better completeness

B Classified
30 B Unclassified
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Credit: Laurie Hatch
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Credit: NOT, Thomas Mellercaard Amby. Credit:Palomar/Caltech
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New Wavelengths!
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Credit: Robert Stein



New Wavelengths!

13 December 2020
The wide-field infrared transient explorer

(WINTER)

Nathan P._Lourie, John W. Baker, Richard S. Burruss, Mark Egan, Gabor Flrész, Danielle Frostig, Allan A. Garcia-
Zych, Nicolae Ganciu, Kari Haworth, Erik Hinrichsen, Mansi M. Kasliwal, Viraj R. Karambelkar, Andrew Malonis,

Robert A. Simcoe, Jeffry Zolkower

Credit: Robert Stein
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Introducing WINTER

J-band survey with ~monthly cadence

ToO program -> First dedicated IR neutrino follow-up program




Introducing WINTER

J-band survey with ~monthly cadence

ToO program -> First dedicated IR neutrino follow-up program

NIR is also great for kilonova searches ->
https://arxiv.org/abs/2110.01622

OPEN ACCESS

An Infrared Search for Kilonovae with the WINTER Telescope. I.
Binary Neutron Star Mergers

1[

Danielle Frostig 12 12 () 3@,
Tito Dal Canton? (), Hsin-Yu Chen"2 (2, Mansi Kasliwal® (), Erik Katsavounidis"?,

Nathan P. Lourie’, Robert A. Simcoe' iﬂ\ﬁ ' + Show full author list

Published 2022 February 21 - © 2022. The Author(s). Published by the American Astronomical Society.
The Astrophysical Journal, Volume 926, Number 2

Citation Danielle Frostig et al 2022 ApJ 926 152

, Sylvia Biscoveanu , Geoffrey Mo , Viraj Karambelkar
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StarapprOaches
black hole

Star distorted by
tidal forces

.Star .
disintegrates

Credit: DESY/Science communication Lab

Accretion disc
forms




Identifying AGN flares

ZTF Lightcurve of WISEA J134034.75+045241.3
b r (634 nm) I i (789 nm)

Stein et al. 2022
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